PRINCIPLES OF GROUNDED LANGUAGE LEARNING

Natalie Parde parde@uic.edu

CS 594: Language and Vision Spring 2019

What is grounded language learning?

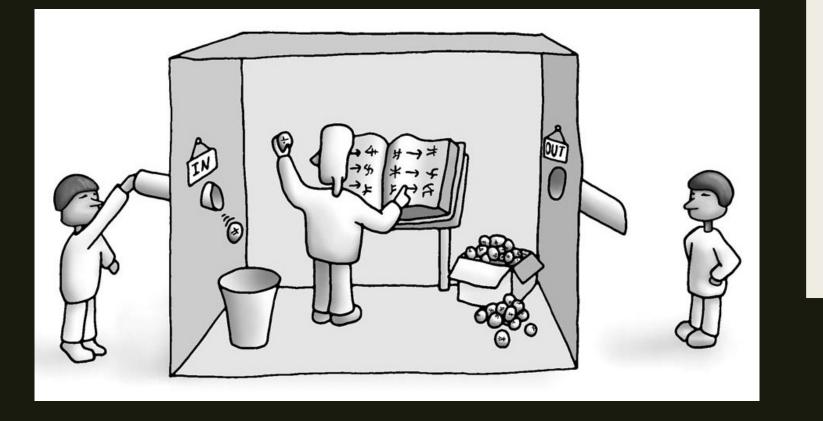
The process of learning representations for words based on non-linguistic experience.

Orange is the colour between yellow and red on the spectrum of visible light. Human eyes perceive orange when observing light with a dominant wavelength between roughly 585 and 620 nanometres.

- https://en.wikipedia.org/wiki/Orange (colour)

Origins in Cognitive Science

- If we can understand how humans understand language, we can hopefully figure out how to replicate it in computers!
- Sapir-Whorf vs. Chomsky
 - Is language deterministic?
- Chomsky: Language is a critical aspect of cognition
- Leading theory driving automatic grounded language learning:
 - Language is a formal symbol system


Language of Thought

- The Language of Thought Hypothesis:¹
 - Thought occurs via structured relationships between symbols in a mental language
 - Mental language ≠ specific spoken language
 - Mental language → common language across all humans
 - Symbols in specific spoken languages are mapped to symbols in the mental language

Turing Test ≈ Language Understanding?

- Thought Experiment:
 - Could you, a human, pass a Turing Test in a language you do not understand?
 - If so, how?
- https://www.google.com/search?q=timer

Searle's Chinese Room

A person who does not speak Chinese could pass a Turing Test in Chinese, by looking up appropriate outputs for inputs in a Chinese-Chinese dictionary. The person still would not understand Chinese.¹

Symbol Grounding Problem

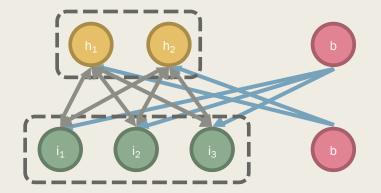
■ How do words get their meanings?¹

- Symbols do not represent anything on their own
- Symbols cannot be defined only in terms of other symbols

Humans understand language by mapping symbols to real-world experiences.

- Human language understanding → far superior to current machine language understanding!
- Grounded language learning attempts to replicate human language understanding using multimodal statistical models, resulting in:
 - Improved mechanisms for automatic language understanding
 - In some cases, new insights to human cognition

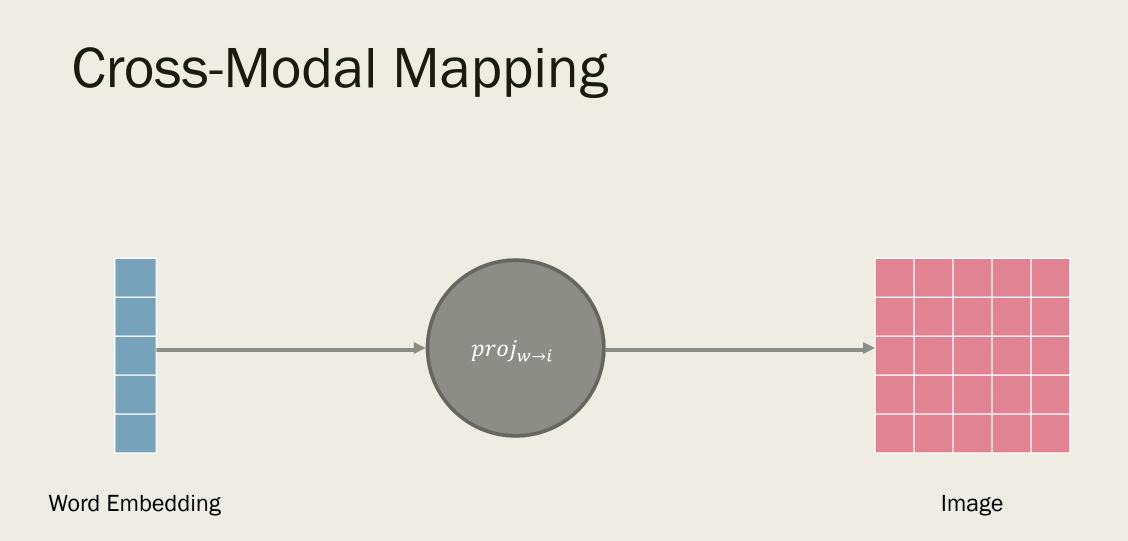
How can machines experience language?


- Sensory input modalities!
 - Vision
 - Images
 - Videos
 - Audio recordings
 - Olfactory perception¹
 - Haptic feedback
- Multimodal: Utilizing more than one input modality

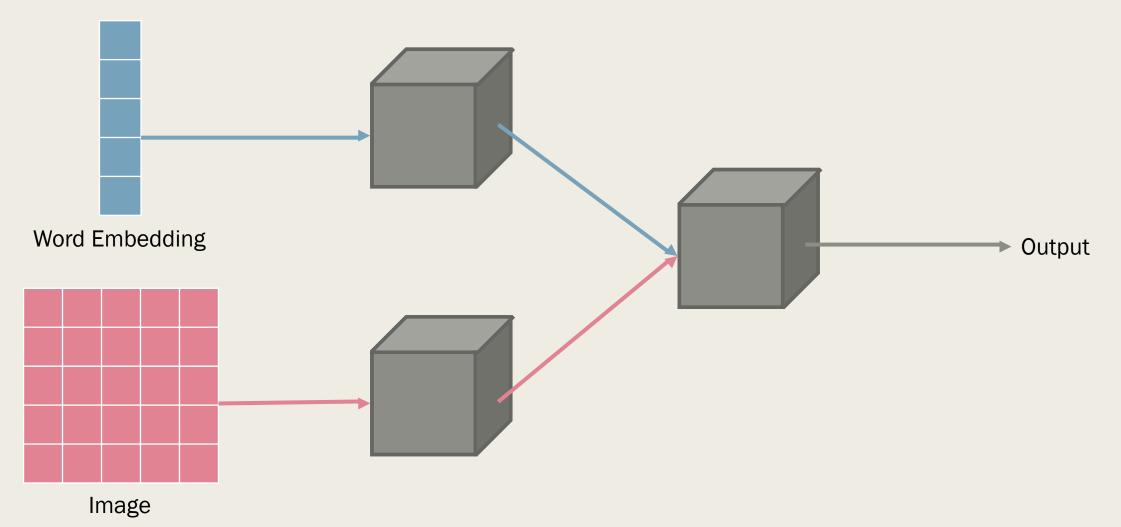
¹Kiela, D., Bulat, L., & Clark, S. (2015). Grounding semantics in olfactory perception. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) (Vol. 2, pp. 231-236).

What types of models allow machines to associate language with sensory perceptions?

- In theory, any classification or regression algorithm could work
- Recently, neural networks:
 - Autoencoders¹
 - Boltzmann Machines²
 - LSTMs³



¹Silberer, C., & Lapata, M. (2014). Learning grounded meaning representations with autoencoders. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)* (Vol. 1, pp. 721-732).


²Srivastava, N., & Salakhutdinov, R. R. (2012). Multimodal learning with deep boltzmann machines. In Advances in neural information processing systems (pp. 2222-2230).

³Rajagopalan, S. S., Morency, L. P., Baltrusaitis, T., & Goecke, R. (2016, October). Extending long short-term memory for multiview structured learning. In *European Conference on Computer Vision* (pp. 338-353).

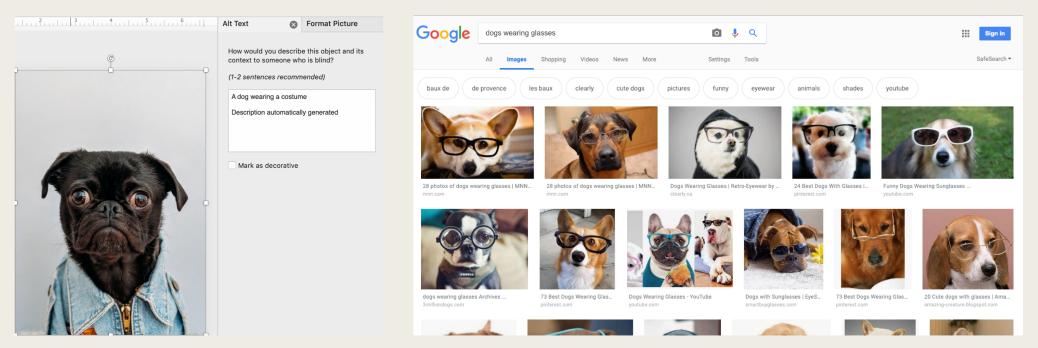
Models can learn mappings from one modality to the other, or learn representations based on multiple modalities in the same space.

Joint Representation

Canonical Correlation Analysis

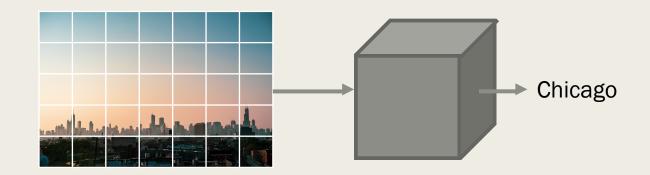
- Popular approach for mapping text and image features to the same space
- Finds pairs of linear projections that maximize the correlation between the text and image features

$$(a';b') = \operatorname*{argmax}_{a,b} \operatorname{corr}(a^T X, b^T Y)$$


Common Application for Cross-Modal Mapping

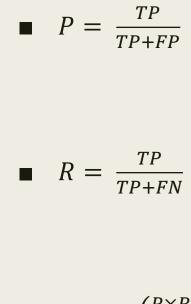
- Zero-shot learning
 - Building a grounded representation for a word before it's been encountered
 - "We found a cute, hairy wampimuk sleeping behind the tree."¹
 - "He put on his sunglasses, rolled down the windows, and sped off into the sunset in his flashy new wampimuk."

Common Applications for Joint Representations


- Image Captioning
- Image Search

© 2019 Natalie Parde

How are grounded language models evaluated?


- Model predictions compared with human-provided labels
- Very common:
 - Accuracy
- Sometimes:
 - Precision
 - Recall
 - F1

Precision, Recall, and F1

- Precision: Of the values predicted to be X, how many actually are X?
- Recall: Of the values that actually are X, how many were predicted to be X?
- F1: What is the harmonic mean between precision and recall?

TP: Predicted	FP: Predicted
Positive &	Positive, Not
Actually	Actually
Positive	Positive
FN: Predicted	TN: Predicted
Negative,	Negative &
Actually	Actually
Positive	Negative

• $F_1 = 2\left(\frac{P \times R}{P+R}\right)$

Resources

Targeted Workshops:

- Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics: <u>https://splu-</u> robonlp.github.io/
- Visually Grounded Interaction and Language: <u>https://nips2018vigil.github.io/</u>
- Language Grounding for Robotics: <u>https://robo-</u> <u>nlp.github.io/2017_index.html</u>

Relevant Lectures:

- How We Teach Computers to Understand Pictures, by Fei Fei Li: <u>https://youtu.be/40riCqvRoMs</u>
- From Naïve Physics to Connotation: Learning and Reasoning about the World Using Language, by Yeijin Choi:

https://youtu.be/V1vRmKnjagw

 Robots that Learn Grounded Language through Interactive Dialog, by Ray Mooney: <u>https://youtu.be/8ZUkF3dNURQ</u>

Wrapping up....

Overview

- Cognitive Science Origins
 - Language of Thought
 - Searle's Chinese Room
 - Symbol Grounding Problem
- Multimodality
- Grounded Language Models
 - Cross-Modal Mapping
 - Joint Representation
- Sample Applications
- Evaluation Metrics
- Resources